

THE LITTLE BOOK ON

REST SERVICES

by Kenneth Lange

Copenhagen, 2016

CONTENTS

INTRODUCTION .. 1

WHAT REST REALLY MEANS .. 3

1. Client Server .. 5

2. Stateless ... 6

3. Cache .. 7

4. Uniform Interface .. 7

5. Layered System .. 17

6. Code-On-Demand (optional) ... 18

REST EXAMPLES FROM THE REAL WORLD 21

Movie App: Create a Movie ... 21

WordPress: Create a New Blog Post .. 22

Twitter: Find Tweets by GPS Coordinates ... 23

Atlassian JIRA: A Transition in a Workflow ... 23

WHERE TO GO FROM HERE? ... 25

REFERENCES .. 27

THE LITTLE BOOK ON REST SERVICES

1

Chapter 1

INTRODUCTION

To put it mildly, the World Wide Web was an unexpected success.

What had started out as a convenient way for research labs to

connect with each other suddenly exploded in size. The web-

usability guru Jakob Nielsen estimated that between 1991 and 1997

the number of websites grew by a staggering 850% per year1.

A yearly growth rate of 850% is so extreme that it is difficult to

grasp. If you had invested $100 at the beginning of 1991 in common

stocks with an identical growth rate, your investment would have

been worth $698,337,296.09 by the end of 1997!

This incredible growth worried some of the early web pioneers,

because they knew that the underlying software was never

designed with such a massive number of users in mind.

So they set out to define the web standards more clearly, and

enhance them so that the web would continue to flourish in this

new reality where it was suddenly the world’s most popular

network.

One of these web pioneers was Roy Fielding, who set out to look

at what made the Internet software so successful in the first place

and where it was lacking, and in his fascinating PhD dissertation2

he formalized his findings into six constraints (or rules), which he

collectively called REpresentational State Transfer (REST).

Fielding’s observation was that if an architecture satisfies these six

constraints, then it will exhibit a number of desirable properties

(such as scalability, decoupling, simplicity) which are absolutely

THE LITTLE BOOK ON REST SERVICES

2

essential in an Internet-sized system, where computers need to

communicate across organizational boundaries.

His idea was that the constraints should be used as a checklist to

evaluate new potential web standards, so that poor design could

be spotted before it was suddenly deployed to millions of web

servers.

He successfully used the constraints to evaluate new web

standards, such as HTTP 1.13 (of which he was the principal author)

and the URI4 syntax (of which he was also one of the key authors).

These standards have both stood the test of time, despite the

immense pressure of being essential protocols on the web and

used by billions of people every day.

So a natural question to ask is that if following these REST

constraints leads to such great systems, why only use them for

browsers and human-readable webpages? Why not also create

web services that conform to them, so we can enjoy the desirable

properties that they lead to?

This thinking led to the idea of RESTful Web Services, which are

basically web services that satisfy the REST constraints, and are

therefore well suited to Internet-scale systems.

THE LITTLE BOOK ON REST SERVICES

3

Chapter 2

WHAT REST REALLY MEANS

When people ask, “What does REST mean?” and you correctly

reply “REpresentational State Transfer” they often get a vacant look

in their eyes.

But while the wording can be a little daunting, the underlying

concept is simple.

It just means that a server has a resource and a client can request

a “representation” (i.e. a description) of the resource’s “state” (i.e.

data). For example, if the resource is a blog post stored in a

database, then its “representational state” could be a simple list of

the values in the database record.

1. The client requests a representation of a
specific blog post

2. The server requests the blog post from
the database.

3. The database returns the blog post.

4. Server creates a JSON representation of
the blog post and sends it to the client.

Client Server Database

This means that the client doesn’t care about the server’s internal

implementation of the resource. The server might store the blog

post in an Oracle database, a flat file, or it might even be generated

THE LITTLE BOOK ON REST SERVICES

4

by a procedure call; it doesn’t matter to the client. All the client

cares about is the representation that it gets from the server.

The JSON (JavaScript Object Notation) format is often used for

resource representations in REST. It is a simple name-value pair

notation. For example, the blog-post representation in Step 4,

above, could look like this in the JSON format:

{

 "title": "7 Things You Didn't Know about Star Wars",

 "content": "George Lucas accidentally revealed that..."

}

When the client has received the representation, it can update it

(for example, change the title), and send the updated

representation back to the server. The server will then update its

internal resource with data from the updated representation; for

example, update the record in the underlying database table with

the new title.

So “REpresentational State Transfer” just means that we are

transferring these representational states between the client and

the server.

This is the basic concept of REST but, as already revealed in the

introduction, there are six REST constraints that an API must satisfy

to be considered RESTful (RESTful meaning that something satisfies

the REST constraints).

Leonard Richardson, author of several books on REST, invented his

three-level REST Maturity Model5, where to reach each level, you

need to satisfy a subset of the REST constraints, and each level

moves you closer towards the ideal REST implementation. But Roy

Fielding, the inventor of REST, states flatly that all the REST

THE LITTLE BOOK ON REST SERVICES

5

constraints must be satisfied (except an optional one) before an

API can be considered RESTful.

So there is no fine step-by-step granulation. If your API is to be

considered RESTful, it must satisfy all the mandatory REST

constraints, which we will explore in detail in the following

subsections.

1. Client Server

The first constraint is that the system must be made up of clients

and servers.

Servers have resources that clients want to use. For example, a

server has a list of stock prices (i.e. a resource), and a client would

like to display these prices in a colorful line chart.

There is a clear separation of concerns between the two. The server

takes care of the back-end stuff (data storage, business rules, etc.)

and the client handles the front-end stuff (user interfaces, user

experience, etc.)

The separation means that there can be many different types of

clients (web portals, mobile apps, BPM engines, chatbots etc.) that

access the same server, and each client can evolve independently

of the other clients and the server (assuming that the interface

between the clients and the server is stable).

The separation also greatly reduces the complexity of the server,

as it doesn’t need to deal with user-interface stuff, which improves

scalability.

This is probably the least controversial constraint of REST, as the

client-server model is so ubiquitous today that we almost forget

THE LITTLE BOOK ON REST SERVICES

6

that there are other styles to consider (such as event-based

protocols).

It important to note that while the HTTP protocol is almost always

used for client/server communication when people develop

RESTful Web Services, there is no constraint that forces you to use

it. You could use FTP as the underlying protocol, if you really

wanted to; although a healthy dose of intellectual curiosity is

probably the only really good reason for trying that.

2. Stateless

To further simplify interactions between clients and servers, the

second constraint is that the communication between them must

be stateless.

This means that all information about the client’s session is kept on

the client, and the server knows nothing of it, so there should be

no browser cookies, session variables or other stateful features.

The consequence is that each request must contain all the

information necessary to perform the request, because it cannot

rely on any context information.

The stateless constraint simplifies the server, as it no longer needs

to keep track of client sessions or resources between requests, and

it does wonders for scalability because the server can quickly free

resources after requests have been finished.

It also makes the system easier to reason about, as you can easily

see all the input data for a request and what output data it resulted

in. You no longer need to look up session variables and other stuff

that makes the system harder to understand.

THE LITTLE BOOK ON REST SERVICES

7

It will also be easier for the client to recover from failures, as the

session context on the server has not suddenly gotten corrupted

or out of sync with the client. Roy Fielding even goes as far as

writing in an old newsgroup post 6 that reliance on server-side

sessions is one of the primary reasons behind failed web

applications, and on top of that, it also ruins scalability.

So far, nothing too controversial in the constraints. Many Remote

Procedure Call (RPC) APIs can probably satisfy both the Client-

Server and Stateless constraints.

3. Cache

The last constraint on the client-server communication is that

responses from servers must be marked as cacheable or non-

cacheable.

An effective cache can reduce the number of client-server

interactions, which contributes positively to the performance of the

system; at least, as perceived from the user’s point of view.

Protocols, like SOAP, that only use HTTP as a convenient way to

get through firewalls (by using POST for all requests) miss out on

the improved performance from HTTP caching, which reduces their

performance (and also slightly undermines the basic purpose of a

firewall.)

4. Uniform Interface

What really separates REST from other architectural styles is the

Uniform Interface enforced by the fourth constraint.

THE LITTLE BOOK ON REST SERVICES

8

We don’t usually think about it, but it’s pretty amazing that you can

use the same Internet browser to read the news and to do your

online banking, despite these being fundamentally different

applications. You don’t even need browser plug-ins to do any of

this!

We can do this because the Uniform Interface decouples the

interface from the implementation, which makes interactions so

simple that anyone familiar with the style can quickly understand

the interface. It can even happen automatically, such as when

GoogleBot and other web crawlers are indexing the Internet simply

by following links.

The Uniform Interface constraint is made up of four sub-

constraints:

4.1 Identification of Resources

The REST style is centered around resources. This is unlike SOAP

and other RPC styles, which are modeled around procedures or

methods.

So what is a resource? A resource is basically anything that can be

named. This is a pretty broad definition, which includes everything

from static pictures to real-time feeds with stock prices.

In enterprise software, the resources are usually the entities from

the business domain (e.g. customers, orders, products). On an

implementation level, it is often the database tables (with business

logic on top) that are exposed as resources.

THE LITTLE BOOK ON REST SERVICES

9

But it is important to note that REST is not “SQL for the web,” as

some unfortunately claim, where you are limited to CRUD

operations on database tables.

You can also model advanced business processes as resources. For

example, the REST API for Atlassian JIRA exposes their highly

configurable workflows as REST Services where you can use their

transition resource to navigate through the workflows.

Each resource in a RESTful design must be uniquely identifiable via

a URI, and the identifier must be stable even when the underlying

resource is updated or, as Tim Berners-Lee, the “father of the web,”

says, “Cool URIs don’t change7.”

This means that each resource you want to expose through a REST

API must have its own URI.

The common pattern is to use the URI style below to access a

collection resource; for example, a collection of customers:

https://api.example.com/customers

The resource name is usually in the plural, because it is a collection

of resources, rather than a single one.

You can use a query parameter to search the collection and only

get those items that satisfy your search criteria.

For example, if you want all the customers whose last name is

Skywalker, then you use a URI similar to the one below:

https://api.example.com/customers?lastname=Skywalker

You can also access individual items in the collection (e.g. a specific

customer) by appending the unique identifier of the item:

https://api.example.com/customers/932612

THE LITTLE BOOK ON REST SERVICES

10

In REST API documentation, a placeholder like “{id}” or “:id” is often

used to show where the identifier is placed in the URI. For example:

https://api.example.com/customers/{id}

Unfortunately, there are some well-known APIs that claim to be

RESTful, but which fail to satisfy this sub-constraint about

identification of resources.

For example, to add a photo to Flickr, a highly popular photo-

sharing website, you need to use the URI below:

https://api.flickr.com/services/rest/?method=flickr.galleries.

addPhoto

The problem with the URI is that the “method” query parameter

and the “addPhoto” method name really mean that it is not

resource-oriented, but an RPC interface that fails to satisfy this

REST constraint.

The result is that it adds unnecessary complexity to their APIs and

forces the API users to look into out-of-band documentation to

figure out how to add a photo.

It goes without saying that Flickr is such an attractive platform that

many developers are willing to do almost anything to integrate

with it. But Flickr could have delivered a better developer

experience by providing a real REST API.

A better way to design Flickr’s URI would have been to expose a

photos resource instead:

https://api.flickr.com/photos

Or use a gallery resource with a photos sub-resource:

https://api.flickr.com/galleries/{id}/photos

THE LITTLE BOOK ON REST SERVICES

11

To add a new photo to Flickr we could simply use HTTP’s POST

method to add a new photo to the photos collection. This would

be consistent with the Uniform Interface constraint and make it

much easier to use.

A bonus of satisfying this convention is that many front-end

frameworks (like AngularJS) can automatically create an

ActiveRecord wrapper around the URI in a single line of code,

which greatly reduces the cost of integrating with the service.

4.2 Manipulation of Resources through Representations

The second sub-constraint in the Uniform Interface is that

resources are manipulated through representations.

As we already saw in the introduction, this means that the client

does not interact directly with the server’s resource. For example,

we don’t allow the client to run SQL statements against our

database tables.

Instead, the server exposes a representation of the resource’s state,

which basically means that we show the resource’s data (i.e. state)

in a neutral format. This is similar to how the data for a webpage

can be stored in a database, but is always sent to the browser in

HTML format.

The most common format for REST APIs is JSON, which is used in

the body of the HTTP requests and responses. For example:

{

 "id": 12,

 "firstname": "Han",

 "lastname": "Solo"

}

THE LITTLE BOOK ON REST SERVICES

12

When a client wants to update the resource, it gets a

representation of that resource from the server, updates the

representation with the new data, sends the updated

representation back to the server, and asks the server to update its

resource so that it corresponds with the updated representation.

The benefit is that you avoid a strong coupling between the client

and server as with RMI in Java, so you can change the underlying

implementation without affecting the clients.

It also makes it easier for clients as they don’t need to understand

the underlying technology used by each server that they interact

with.

This is also a great opportunity for legacy systems to expose their

often valuable data and functionality in a style that is much easier

to understand for modern API clients - and clients will not be able

to tell whether the data comes from a MongoDB database or an

old-school mainframe.

4.3 Self-Descriptive Messages

The third constraint in the Uniform Interface is that each request or

response message must include enough information for the

receiver to understand it in isolation.

Each message must have a media type (for instance,

“application/json” or “application/xml”) that tells the receiver how

the message should be parsed.

HTTP is not formally required for RESTful web services, but if you

use the HTTP methods you should follow their formal meaning8, so

that clients don’t need to read out-of-band information to

THE LITTLE BOOK ON REST SERVICES

13

understand the methods (e.g. don’t use POST to retrieve data, or

GET to save data).

HTTP Method Meaning

GET The GET method is used to retrieve whatever information is specified

in the URI. It is the same method that is used when you open a

webpage in your browser. It should not do anything besides

retrieving the requested URI.

Many HTML forms have used GET as the value in the METHOD

attribute for forms that actually have serious side-effects (like

creating new resources). This is clearly misleading, and might confuse

both web crawlers and browsers who think it is safe to call it.

For example, when Google Chrome first introduced pre-fetching (i.e.

load links before the user presses them to improve performance) it

gave highly unpredictable results, because many websites used GET

in HTML Forms. So the browser thought the call would only retrieve

data, but the calls did unfortunately have serious side effects due to

some websites’ ignorance of the HTTP standard.

POST Create a new resource underneath the one specified in the URI. It is

similar to when you post a message to your Facebook timeline. That

is, you add a new message to the timeline. The method is not safe,

which means that it has side effects, and it is not idempotent, which

means that if you make the same request twice, you will get two

different results, similar to posting twice to your Facebook timeline.

PUT The HTTP PUT method replaces the resource specified in the URI with

the new resource representation in the request body. PUT is a full

replace, and not a partial update. That is, it is similar to overwriting a

complete file, rather than updating a single database column.

PUT is idempotent, which means that if you execute it twice, the result

will be the same as if you execute it once. It is similar to overwriting

a file in a directory: if you overwrite it twice, the end-result will still be

the same.

DELETE Deletes the resource specified in the URI.

THE LITTLE BOOK ON REST SERVICES

14

So for the customer URIs, which we defined in a previous section,

we can expose the following methods for the client to use:

Task Method Path

Create a new customer POST /customers

Delete an existing customer DELETE /customers/{id}

Get a specific customer GET /customers/{id}

Search for customers GET /customers

Update an existing customer PUT /customers/{id}

The benefit is that the four HTTP methods are clearly defined, so

an API user who knows HTTP but doesn’t know our system can

quickly guess what the service is doing by only looking at the HTTP

method and URI path (i.e. if you hide the first column, a person

who knows HTTP can guess what it says based on the last two

columns).

Unfortunately, there are well-known APIs which fail to satisfy this

sub-constraint. For example, to read, create or delete a “Direct

Message” in Twitter, you use these URIs in Twitter’s REST API:

GET /direct_messages/show.json?id={id}

POST /direct_messages/destroy.json?id={id}

POST /direct_messages/new.json

They would have been much easier to use if they had used the

HTTP methods as intended, and left the method name out of the

URI. For example:

GET /direct-messages/{id}

POST /direct-messages

DELETE /direct-messages/{id}

Another cool thing about self-descriptive messages is that (similar

to statelessness) you can understand and reason about the

THE LITTLE BOOK ON REST SERVICES

15

message in isolation. You don’t need out-of-band information to

decipher it, which again simplifies things.

For example, if I had a “direct-messages” resource, it would be

logical for me that you would use HTTP’s DELETE to delete a direct

message. But I would be forced to read through Twitter’s API

documentation to figure out that I needed to call POST against a

home-made “destroy.json” URI.

Of course, Twitter is an extremely exciting platform, so people are

willing to look in their API documentation to figure out how it

works, and it is probably too late for Twitter to dramatically change

their API, as it would break all existing third party apps.

But they could have made their API more readable by following the

convention of the HTTP methods; and platforms that are less

attractive than Twitter’s should avoid this quirky behavior.

4.4 Hypermedia as the Engine of Application State

The fourth and final sub-constraint in the Uniform Interface is

called Hypermedia as the Engine of Application State (HATEOAS).

It sounds a bit overwhelming, but in reality it’s a simple concept.

A webpage is an instance of application state; hypermedia is text

with hyperlinks. The hypermedia drives (i.e. acts as an engine of)

the application state. In other words it just means that we click on

links to move to new pages (i.e. switching between application

states).

So when you are surfing the web, you are using HATEOAS!

The constraint basically says that we should use links (i.e.

hypermedia) to navigate through the application.

THE LITTLE BOOK ON REST SERVICES

16

The opposite would be, for example, to take a customer identifier

from one service call, and then manually append the customer

identifier to the orders service to get a list of the customer’s orders.

It should work like a good website, where you just enter the URI

and then follow the links that are provided on the webpages, such

as when you go to The Economist’s website: you just enter the

initial URI (i.e. http://www.economist.com) and expect to be able to

follow links to anything on their website from that initial URI. You

would be disappointed (or unaware that it even existed!) if you

needed to enter a new, separate URI to access the Science and

Technology section while surfing the site.

In a REST API context, this means that we enhance resource

representations with links. For example, in a customer

representation, there can be a links section with a link to the

customer’s orders:

{

 "id": 12,

 "firstname": "Han",

 "lastname": "Solo",

 "_links": {

 "self": {

 "href": "https://api.example.com/customers/12"

 },

 "orders": {

 "href": "https://api.example.com/orders?customerId=12"

 }

 }

}

An enormous benefit is that the API user doesn’t need to look in

the API documentation to see how to find the customer’s orders,

so he or she can easily explore the API while developing without

having to refer to out-of-band documentation.

THE LITTLE BOOK ON REST SERVICES

17

It also means that the API user doesn’t need to manually construct

and hardcode the URIs that he or she wants to call. This might

sound like a trivial thing, but Craig McClanahan, co-designer of the

Sun Cloud API, wrote in an informative blog post 9 that in his

experience 90% of client errors were caused by badly constructed

URIs.

Roy Fielding didn’t write a lot about the hypermedia sub-constraint

in his PhD dissertation (due to lack of time), but he later wrote a

blog post10 where he clarified some of the details: most importantly

that HATEOAS is a mandatory constraint, so an interface cannot be

said to be RESTful unless this constraint is satisfied.

5. Layered System

The fifth constraint is another constraint on top of the Uniform

Interface, which says that the client should only know the

immediate layer it is communicating with, and not know of any

layers that may or may not be behind the server.

This means that the client doesn’t know if it’s talking with an

intermediate or the actual server. So if we place a proxy or load

balancer between the client and server, it wouldn’t affect their

communications and we wouldn’t need to update the client or

server code.

It also means that we can add security as a layer on top of the web

services, and then clearly separate business logic from security

logic.

Finally, it also means that a server can call multiple other servers to

generate a response to the client.

THE LITTLE BOOK ON REST SERVICES

18

For example, a single webpage on Amazon consists of data from

100-150 web services11. If a client webpage on a mobile device

needed to call all of these, the waiting time caused by latency

would probably kill the user experience.

So instead Amazon creates channel-specific (for example, mobile

apps) API Gateways, which call all the required services and return

the response to the client:

API Gateway

Books API

Recommendations
API

(…)

REST Client

User API

The client is not aware of the multiple layers. To the client it just

looks as if it gets the data from a single REST Service.

6. Code-On-Demand (optional)

The sixth and final constraint is the only optional constraint in the

REST style.

Code-On-Demand means that a server can extend the functionality

of a client on runtime, by sending code that it should execute (like

Java Applets, or JavaScript).

THE LITTLE BOOK ON REST SERVICES

19

I have not heard of any REST APIs that actually send code from the

server to the client on runtime and get it executed on the client,

but this could be a powerful way to beef up the client.

But in webpages this is very common. When your browser accesses

a webpage, it almost always downloads a lot of JavaScript specific

to the webpage, and hence extends the functionality of your

browser on runtime through code-on-demand.

For example, on Instagram you get JavaScript code that can add

different kinds of filters to your photos. You get this code on

demand. The functionality is not pre-installed in the browser, but

something you get when you load Instagram’s webpages.

A really nice feature of the simplicity that is enforced by these six

constraints (particularly Uniform Interface and Stateless

interactions) is that the client code becomes much easier to write.

If we follow the conventions above, most modern web frameworks

can figure out what to do, and take care of most of the boilerplate

code for us.

For example, in Google’s AngularJS JavaScript framework, we

simply need the JavaScript below to create a customer:

// Only code needed to configure the RESTful Web Service

var Customer = $resource('/customers/:id', {id: '@id'});

// Create a new customer representation

var customer = new Object();

customer.firstname = "Han";

customer.lastname = "Solo";

// Ask the server to save it

Customer.save(customer, function() {

 console.log("Saved!");

THE LITTLE BOOK ON REST SERVICES

20

});

So the front-end engineer just needs to add a few more lines to

add an HTML form where the user can enter the values, and Voilà,

we have a basic web app!

If you use one of the many beautiful user interface frameworks (like

Twitter’s Bootstrap12 or Google’s Materialize13), you can quickly

develop something really nice-looking in a very short time.

Now let’s move on and see some real-world example of REST

Service calls.

THE LITTLE BOOK ON REST SERVICES

21

Chapter 3

REST EXAMPLES FROM THE REAL WORLD

There is nothing in the six REST constraints that says you must use

HTTP and/or JSON for your REST API, but there seems to be a

consensus that these are the preferred ways of implementing REST

APIs.

Why have these two standards been chosen? It is probably that

they are open standards, which have been accepted by the Internet

Engineering Task Force (IETF).

As the influential software architect and author Martin Fowler

explains, standards that are approved by the IETF only become

standards after several live implementations around the world,

which usually means that they are battle-tested, user-friendly and

pragmatic14.

This is unfortunately the opposite of many corporate standards,

which in Fowler’s blunt criticism, “are often developed by groups

that have little recent programming experience, or overly

influenced by vendors.”

But before this turns into a philosophical discussion of the merits

of open standards, let’s move on and see some REST APIs in action!

Movie App: Create a Movie

As part of his fine article on AngularJS’s $resource service, Sandeep

Panda created a simple, publicly available REST Service 15 for

maintaining a small movie database.

THE LITTLE BOOK ON REST SERVICES

22

If you want to add a new movie using this REST API, you send the

following HTTP request:

POST /api/movies

{

 "title": "The Empire Strikes Back",

 "director": "Irvin Kershner",

 "releaseYear": 1980,

 "genre": "Sci Fi"

}

In the HTTP request above, we say that we want to add (i.e. POST)

a new movie to the collection (i.e. /api/movies) and we include the

new movie as a JSON object in the request body.

This Movie resource is really nice if you want some hands-on

experience with REST Services. For example, you can download

Postman16, a popular REST client, and try to send some different

HTTP requests (GET, PUT, POST and DELETE).

WordPress: Create a New Blog Post

You can argue that the Movie App REST Service call in the previous

example is just a toy, which is absolutely correct.

But REST calls in the real world are not necessarily more complex.

For example, to create a new blog post with WordPress’s REST API,

you simply need to send this HTTP request:

POST /wp/v2/posts

{

 "title": "7 Things You Didn't Know about Star Wars",

 "content": "George Lucas accidentally revealed that..."

}

THE LITTLE BOOK ON REST SERVICES

23

Twitter: Find Tweets by GPS Coordinates

Besides basic CRUD-like functionality, you can also use REST

Services for more advanced queries.

For example, you can use Twitter’s REST API to search for all tweets

that happen near a given set of geo coordinates.

For example, the REST Service call below would give us tweets from

Times Square in New York. It would probably be quite an

experience to see the result on New Year’s Eve:

GET /geo/search.json?lat=40.758896&long=-73.985130

But the use case is not only fun and excitement ...

A geographical search is also highly relevant for insurance

companies. For example, if a claims manager sees a sudden spike

in the number of claims reported within a geographical area, then

tweets from that area can provide important information in helping

him or her to assess the severity of the situation.

Atlassian JIRA: A Transition in a Workflow

A common, yet misunderstood, critique of REST Services is that

they can only be used for simple CRUD operations (as if REST were

just SQL for the web), which is clearly wrong.

For example, in Atlassian JIRA, a popular issue tracking tool that

offers highly configurable workflows, you can transit from one state

(e.g. In Progress) to another state (e.g. Closed) with the REST

Service calls below.

First, you get a list of possible transitions based on the current

status of the issue (in this example the issue identifier is BUG-35):

THE LITTLE BOOK ON REST SERVICES

24

GET /rest/api/2/issue/BUG-35/transitions

This REST Service will return a list of possible transitions (or

workflow actions) based on the issue’s current state:

{

 "transitions": [

 {

 "id": "5",

 "name": "Close Issue"

 }

]

}

Afterwards you can pick one of the transitions (in this case there is

only one) and send an HTTP POST request to perform the

transition. For example, you can close the issue with the HTTP

request below:

POST /rest/api/2/issue/BUG-35/transitions

{

 "transition": {

 "id": "5"

 }

}

The workflow pattern used by Atlassian can easily be adopted for

other workflows; for example, the processing of insurance claims.

As you can see, REST comes in many flavors and sizes; from simple

CRUD-like functionality to create a new blog post using

WordPress’s API to sophisticated workflows like JIRA’s REST API.

THE LITTLE BOOK ON REST SERVICES

25

Chapter 4

WHERE TO GO FROM HERE?

In this little book I have explained the six constraints that make up

the REST architectural style, and provided a number of real-world

examples of REST APIs which, with a little luck, have given you a

good understanding of the basis of REST Services.

If you want to continue your journey towards becoming a REST

expert, the next natural step is to read Roy Fielding’s PhD

dissertation. But be aware that it is an academic text, and not a

James Bond novel, so don’t expect it to be a quick read.

Personally, I had to Google many of the words and concepts and

re-read some sections multiple times before I finally got it. But the

time invested paid off, and it was both a highly educational and a

rewarding experience.

Another good reason to read it is that it is one of the most

influential dissertations in computing since Claude Shannon in 1937

shared his brilliant insight that electric circuits can be used for

executing boolean algebra using simple on/off switches, and hence

laid the groundwork for how all computers work.

If you have had enough theoretical stuff, and want to get some

hands-on experience in calling REST Services, I can recommend

that you download Postman, a popular REST client, and try to play

with some public REST APIs.

THE LITTLE BOOK ON REST SERVICES

26

If you want to code your own REST Services, you should probably

find a book that explains how to code them in your chosen

technology. Personally, I really like Bill Burke’s “RESTful Java with

JAX-RS 2.0”, which explains how to implement REST Services in

Java.

Finally, if you need to implement a REST API, you might find my

online checklist17 for REST APIs to be useful.

Thank you for reading, and best of luck with your future REST

adventures.

Kenneth Lange.

THE LITTLE BOOK ON REST SERVICES

27

REFERENCES

1100 Million Websites. Jakob Nielsen. Retrieved November21, 2016.

2Architectural Styles and the Design of Network-based Software

Architectures. Roy Thomas Fielding. Retrieved November21, 2016.

3RFC2616: Hypertext Transfer Protocol -- HTTP/1.1. Fielding et. al.

Retrieved November21, 2016.

4 RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax.

Berners-Lee et al. Retrieved November 21, 2016.

5 Richardson Maturity Model: Steps toward the glory of REST.

Martin Fowler. Retrieved November 23, 2016.

6REST, HTTP, Sessions and Cookies. Roy Thomas Fielding. Retrieved

November 23, 2016.

7Cool URIs don’t change. Tim Berners-Lee. Retrieved November 23,

2016.

8 Method Definitions (part of Hypertext Transfer Protocol --

HTTP/1.1 RFC 2616 Fielding, et al.) Fielding, et al. Retrieved

November 23, 2016.

9Why HATEOAS? Craig McClanahan. Retrieved November 23, 2016.

10 REST APIs must be hypertext-driven. Roy Thomas Fielding.

Retrieved November 23, 2016.

11Amazon Architecture. Todd Hoff. Retrieved November 23, 2016.

12Bootstrap. Retrieved November 23, 2016.

13Materialize. Retrieved November 23, 2016.

https://www.nngroup.com/articles/100-million-websites/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2396.txt
http://martinfowler.com/articles/richardsonMaturityModel.html
https://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/3583
https://www.w3.org/Provider/Style/URI.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://blogs.oracle.com/craigmcc/entry/why_hateoas
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://highscalability.com/blog/2007/9/18/amazon-architecture.html
http://getbootstrap.com/
http://materializecss.com/about.html

THE LITTLE BOOK ON REST SERVICES

28

14Battle-tested standards and enforced standards. Martin Fowler.

Retrieved November 23, 2016.

15Movie REST Service. Retrieved November 23, 2016.

16Postman. Retrieved November 23, 2016.

17The Ultimate Checklist for REST APIs. Kenneth Lange. Retrieved

November 25, 2016.

http://www.martinfowler.com/articles/microservices.html#Battle-testedStandardsAndEnforcedStandards
http://movieapp-sitepointdemos.rhcloud.com/api/movies/
https://www.getpostman.com/
http://www.kennethlange.com/posts/The-Ultimate-Checklist-for-REST-APIs.html

THE LITTLE BOOK ON REST SERVICES

1

RESTful Web Services have become extremely popular.

For Internet giants, such as Facebook, Amazon and Twitter, REST

APIs have become the de-facto way to expose their APIs to third

parties.

But REST is often misunderstood and misused, which means that

its full power is not realized. The reason is that many engineers lack

an accurate understanding of both the REST architectural style and

RESTful Web Services.

This little book gives you a solid understanding of what REST

Services are all about. It both explains the architectural style in

details and shows how to call REST Services using examples from

Twitter, WordPress and other real-world APIs.

About the Author:

Kenneth Lange is an Engineering Manager at TIA Technology,

where he leads the development of a REST API for an award-

winning insurance solution with more than 100,000 daily users.

He is also the creator and maintainer of The Ultimate Checklist for

REST APIs, which is a handy collection of best practices for

developing REST Services.

You can reach him on Twitter (@KennethLange) where he tweets

about REST and related topics.

	INTRODUCTION
	WHAT REST REALLY MEANS
	1. Client Server
	2. Stateless
	3. Cache
	4. Uniform Interface
	4.1 Identification of Resources
	4.2 Manipulation of Resources through Representations
	4.3 Self-Descriptive Messages
	4.4 Hypermedia as the Engine of Application State

	5. Layered System
	6. Code-On-Demand (optional)

	REST EXAMPLES FROM THE REAL WORLD
	Movie App: Create a Movie
	WordPress: Create a New Blog Post
	Twitter: Find Tweets by GPS Coordinates
	Atlassian JIRA: A Transition in a Workflow

	WHERE TO GO FROM HERE?
	REFERENCES

