

HOW TO STRUCTURE YOUR

ENGINEERING TEAMS

by Kenneth Lange

First Edition

CONTENTS

INTRODUCTION .. 1

TEAM STRUCTURES .. 3

 Team Structure 1: Technology Team .. 3

 Team Structure 2: Product Team .. 8

 Team Structure 3: Matrix Team.. 18

PICK THE RIGHT TEAM STRUCTURE 25

REFERENCES .. 28

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

1

Chapter 1

INTRODUCTION

The team structure you pick for your engineering organization

will have a massive impact on its effectiveness and productivity.

Research by J. Richard Hackman, professor at Harvard University,

suggests that 60% of a team’s performance is determined by its

structure1.

On the other hand, you only need to talk with a few software

executives before you realize that they structure their teams in

very different ways. Why is that? Why has the software industry

not found a team structure that outperforms all others and

established it as best practice? If team structure is the most

important key to success, there should be a strong motivation for

this to happen.

The short answer is that the right team structure depends on

what is important to the company: is it speed to market, technical

excellence, or something else?

While software companies structure their teams in very different

ways, they tend to base their teams on one of three generic team

structures, which they then adopt to their circumstances:

1. Technology teams: The horizontal approach where you

organize your teams along the layers in your tech stack; for

example, a frontend, a backend, and a database team. Each

team is formed around a technology, such as Android, and

all team members report to a manager who is also skilled in

that technology.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

2

2. Product teams: The vertical approach where you organize

your teams according to the business areas in your solution;

for example, a customer and an order team. Each team is

cross-functional and has all the different skills needed to

deliver its product.

3. Matrix teams: The mixed approach where you seek to

organize teams along product and technology dimensions

at the same time. In this team structure, the developers

report to a development manager, but they are “lent out” to

cross-functional product or project teams where they do

their daily work.

These team structures can be customized in many different ways;

for example, both Microsoft and Spotify have used matrix teams,

but in vastly different ways; and companies can mix and match

elements from each team structure. For example, some

companies, like Instagram, use product teams for the majority of

their teams, but have a technology team for their underlying

technology platform. And some companies use a technology

team when they introduce new technologies, such as AI or mobile

apps, and later integrate the team members into the rest of their

product teams.

In the next chapter we will dive into each of these team structures

to explore their strengths and weaknesses, and see how world-

class companies are using them and adjusting them to fit their

special needs.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

3

Chapter 2

TEAM STRUCTURES

Team Structure 1: Technology Team

A technology team is a team of software developers who work

with the same technology; for example, a small company may

have a frontend and a backend technology team, and a larger

company may have teams for individual technologies, such as

Java EE or Oracle Databases.

A technology team consists exclusively of software developers

who are specialized in a specific technology. This means that the

technology team has no product managers, testers, or even

developers working with other technologies. All team members

report to a development manager who is also skilled in this

technical area.

An example of a technology team is an iOS team, which develops

apps for Apple devices. The team consists of a number of iOS

developers who report to a development manager who has deep

knowledge about developing iOS apps:

iOS Developer iOS Developer iOS Developer

iOS Team

Technology teams, such as a frontend and a backend team,

within the same company rarely share any code. Their code is

typically written in different languages and frameworks, such as

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

4

Swift or Python, and exists in different code repositories. The

technical interaction among the teams usually happens through a

REST API2 or similar.

The reporting lines in such an organization are based on

expertise. In other words, a mobile developer reports to a mobile

development manager, and not a backend development manager

or a product manager.

The managers in such a development organization are likely to be

senior engineers who have been promoted to management

positions and now also handle people management on their

teams. A manager will still be writing code, or at least will have

the ability to do so, and usually also handles the project

management of the team’s work and coordination with other

teams.

The rock star in such an engineering organization is likely to be a

technical expert, whose skill is measured by some technical

standard, such as in-depth knowledge of the team’s technology

or his or her ability to write the most elegant and concise code.

A real-world example of using technology teams is early

Instagram3 (around 2015) where their engineering organization

consisted of three technology teams:

Mobile Team Backend Team

Data & Monetization
Team

Instagram
Engineering

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

5

As the company grew, Instagram eventually moved away from

this structure as you will see in the following section about

product teams.

Strengths

The primary strength of the technology team structure is

technical excellence, which will be higher than in any of the other

team structures.

A technology team’s codebase is likely to be of a high quality, to

take advantage of the latest advancements within the chosen

technology, and to contain very little technical debt.

It can also be easier to recruit top-notch technical experts for

such a team. For example, if an engineer is intensely passionate

about Django then the idea of working in a Django team,

reporting to a Django manager, and being surrounded by Django

experts is an almost irresistible proposition.

Finally, a technology team’s manager is likely to be highly

competent in the technical work that the team performs, which is

a key to high job satisfaction according to recent research4.

A technically competent manager can evaluate developers based

on merit, rather than some measure that can be easily faked, such

as who stays the longest in the office. The manager can also

provide detailed coaching on how to write better code, and will

have better awareness of when a developer is ready to be

promoted to the next level

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

6

Weaknesses

A frequent problem in engineering organizations that use

technology teams is that their time to market (for new features)

tends to be slow.

The reason is that one team may finish its part of the new feature

fast, but the next team might be busy with something else and

thus unable to work on its part anytime soon – as shown in the

diagram below:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Product
Management

Backend Team
Frontend

Team
QA

Spec
Complete

Backend
Code Complete

Frontend
Code Complete

QA
Complete

Time to market

This means that work backs up between the teams. The cost of a

new feature may not be high in actual development time, but it

can be very expensive in calendar time, and hence, may result in a

slow speed to market.

This problem should not be underestimated. Speed to market is

hugely important for most businesses. In lean thinking, unfinished

features are expensive inventory that cost the company money,

because they do not generate business value until they are in

production and the end users start to benefit from them.

This team structure also nudges you toward phased or waterfall

development where each team finishes its part of the work before

passing it on to the next team. This discourages iterative

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

7

development and short feedback loops, and when mistakes start

to occur, due to limited communication between the teams, the

handovers are likely to become cumbersome and time-

consuming, and can even lead to a destructive “us-versus-them”

attitude between the teams which will discourage further

collaboration.

In an attempt to overcome the weaknesses of technology teams,

namely slow speed to market and poor cross-functional

collaboration, some engineering organizations have introduced

product teams that focus on product areas (or verticals) instead of

technical layers (or horizontals). Their reasoning is that organizing

around products will lead to improved collaboration among

different roles, such as frontend and backend developers,

because they will literally be on the same team. On top of that,

they also expect that speed to market will increase, because when

a product team takes on a new feature it has all the skills

necessary to finish it.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

8

Team Structure 2: Product Team

Product teams are organized around a company’s product areas,

such as customers or orders, instead of the technical layers in its

tech stack, such as frontend and backend.

The motivation behind aligning team structure with product

structure is to align the teams’ success more closely with the

company’s success. In a product team, the measure of success is

less likely to be technical excellence, as in a technology team, and

more likely to be how well the product performs in the

marketplace.

A product team needs all the different roles, such as developers

and testers, that are required to develop and maintain its product

area. A single manager is responsible for the team, and all team

members, regardless of their role, report to him or her. So it

doesn’t matter whether a team member is a UX designer, a

frontend developer, or a tester, they all report to the same line

manager.

A key reason for having all team members report to the same

manager is to simplify decision making – the buck stops at the

line manager regardless of the functional area. Another reason is

that it encourages people on the team to learn more about the

business area that the product serves.

When Instagram moved away from technology teams, they

adopted the product team structure that you can see in the org

chart below:

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

9

Instagram organized their teams around product areas, such as

content creation and communication. To handle cross-cutting

concerns, they added to platform teams: the Core Client team for

developing the container (or app shell) that the product teams

develop their product areas within, and a Core Infrastructure

team that handles servers and other infrastructure.

The line manager in this team structure is often called an

engineering manager to show that he or she is not a manager for

a specific technology area, such as mobile development, or a

specific discipline, such as testing, but rather a manager

responsible for all engineering within a product area.

Engineering organizations that use the product team structure

tend to grow leaders who are good at bringing different

disciplines together and making them build a unified product

where all the pieces fit nicely together.

The pattern also encourages leaders to focus on building a

product that actually solves a business problem: it aligns the

manager’s and the team’s success much more closely with the

company’s success and it becomes much easier to define

business-relevant KPIs, such as monthly active users, for the team.

Another interesting dynamic in companies that move from

technology teams to product teams is that full-stack engineers

with a good understanding of the product area tend to replace

the technical expert, a specialist in a single technology, as the

Instagram
Engineering

Consumption Creation Communication Growth
Community
Engineering

Business &
Monitization

Core
Client

Core
Infrastructure

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

10

rock stars of the engineering organization. The reason is that a

specialist can typically only build part of a feature. For example, a

Django expert can develop the backend functionality, but not the

frontend technology, because it is written in React which he or

she does not know. But the developer reports to a line manager

who is responsible for the whole product, and not just a single

technology, and is therefore more interested in shipping

complete features fast, and hence is more likely to reward people

who can deliver complete features.

This dynamic is further accelerated if it is a software-as-a-service

company that uses continuous deployment and competes in a

business where speed to market matters, which tends to be true

for almost all businesses.

In many traditional companies, there is one department for

development, which develops the software, and another

department for operations, which runs the software.

While great improvements have been made in making cross-

functional product teams within development departments, the

walls between development and operations remain strong. This

slows down speed to market for new features. That is, a feature

may be completed by development, but if operations do not have

time to deploy it to production, then it doesn’t matter to the end

users as the feature is still unavailable, just for a different reason.

Some companies for whom speed to market is business-critical,

realized that they needed better collaboration between

development and operations in order to increase their speed to

market. Therefore, so they started to form DevOps teams with

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

11

both development and operations people, so the teams can

deploy to production when a feature is ready.

This thinking is a natural continuation of the product team

structure’s goal of being end-to-end responsible for a product

area, and as the world evolves slowly but surely toward software-

as-a-service with microservices, continuous deployment, and

serverless computing, this structure is likely to become

increasingly popular.

Airbnb: Persona-based teams

Airbnb has made an interesting adjustment to the product team

structure 5 : they have their product teams focus on specific

personas, such as guest or host, instead of more traditional

product areas, such as billing or booking. This makes it easy for

Airbnb to empathize with its end users and establish KPIs to

measure their satisfaction.

Amazon: Two-pizza teams and fitness functions

At Amazon, they use two-pizza teams which consist of the

number of people you can feed with two pizzas, roughly 6 to 10

people6. The team is headed by a team lead, who agrees on a

fitness function (a single key business metric) with the

management team. The team lead, and his or her team, is then

given autonomy to optimize for this fitness function in whatever

way they want, and the team lead essentially works as a mini-CEO

for the product area.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

12

Scrum and product teams

Many companies use the Scrum framework7, first introduced in

the early 1990s, to structure their self-organizing, cross-functional

teams.

A Scrum team consists of three, pre-defined roles:

• Product Owner: Defines and prioritizes the development

team’s work.

• Development team: The people, such as software engineers,

UX designers, QA specialists, who do the actual work.

• Scrum Master: Coaches the product owner and

development team in working more effectively with Scrum

and removes impediments that slow down the team.

Some companies combine the product team pattern with the

Scrum methodology by letting the line manager be the Scrum

Master. There has been much heated debate about whether this

is a good idea: the strength is that it will be easier for the Scrum

Master to remove impediments and coach the team; the

weakness is that the Scrum Master can become too powerful, so

there is no longer a self-organizing team of peers where the best

ideas win. In the end, whether this setup is a good idea depends

greatly on the company culture and the personality of the line

manager / Scrum Master.

An equally heated debate concerns whether to let the Scrum

Product Owner become the line manager for the team.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

13

Strengths

A major strength of a cross-functional product team is that all the

skills necessary to deliver new features are immediately available

within the team, so there won’t be any time gaps between the

teams, as we saw with the technology teams. This reduces the

time to market for new features:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Product
Management

Backend Team
Frontend

Team
QA

Spec
Complete

Backend
Code Complete

Frontend
Code Complete

QA
Complete

Time to market

Te
ch

n
o

lo
gy

 T
e

am

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Product
Management

Backend Team
Frontend

Team
QA

Spec
Complete

Backend
Code Complete

Frontend
Code

Complete

QA
Complete

Time to market

P
ro

d
u

ct
 T

e
am

Another advantage of product teams over technology teams is

that the teams are much more closely aligned with business

success. A product team is unlikely to feel successful if their

product has just flunked a major public review or if the number of

monthly active users is declining month after month – even if

their code is so beautiful that it could have been used as an

example in Clean Code8.

It is also my experience that more and more software engineers

no longer really fit the old computer geek stereotype who just

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

14

wants to be left alone and code. They want to see their product

succeed in the market and see it make a positive difference in

people’s lives.

A product team is more likely to build a unified product because

they have better collaboration across all the different disciplines

that are needed to build a software product and they have a

lower risk of an unhealthy “us-versus-them” culture.

These strengths contribute to a product team’s ability to iterate

very fast and launch new product features quickly.

A caveat is that many of these strengths can be nullified if the

product team has strong dependencies outside the team’s

control. These external dependencies can be organizational, like

external reviews or approvals, or technical, like an architecture

that is a big ball of mud where any change to the codebase can

have unexpected side effects in other modules, so all teams need

to carefully coordinate their work.

Weaknesses

A serious risk with product teams, compared to technology

teams, is that they may devote less attention to engineering

excellence and their technical debts might increase to

unmanageable levels.

There may be several reasons for this:

1. Engineers become so focused on market success that they

lower their engineering standards. This is a risk if the

product team is led by a strong and opinionated product

manager.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

15

2. Each team becomes a silo, reporting to a single line

manager, and there can only be so many senior engineers

on a single team. So, for example, if a team only has a junior

Android engineer, who will make sure that the quality of his

or her code is satisfactory, or make sure that he or she

knows the best Android blogs to follow?

There is also a higher risk of code duplication. That is, several

product teams may independently develop the same functionality

in their individual codebases, which may or may not be a

problem, depending on your belief system.

Another risk is that it can become difficult to move people

between teams. If an engineer needs to move to another product

team, he or she will also need to change line manager. So there

may be resistance to the move: the engineer might like his or her

current line manager and not want to start over with a new

manager, and the manager might be an empire builder who is

not willing to “give away” an engineer to another team. The

consequence is that the company may not allocate its people to

its highest priorities or greatest opportunities.

Another risk, compared to technology teams, is that recruitment

can be tougher. It is easier to explain to a React developer that it

will be a great idea to join a React team than it is to explain that it

will be a great idea to join the life insurance team. This risk can be

mitigated by explaining why this area is interesting from a

technical point of view or how it makes a positive difference in the

world.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

16

Some companies brand their product teams, at least in job ads, as

full-stack teams, and given it is cool to be a full-stack engineer,

their thinking is that it will be easier to recruit people for a full-

stack team than for the life insurance team.

From a manager perspective, my experience (having been both a

development manager and an engineering manager) is that

being an engineering manager responsible for a product area is a

more demanding job. It is not because the job is difficult from a

technical point of view; it is because the responsibility is much

broader. You will essentially become a mini CTO or VP of

Engineering for a small software company.

You will also have a direct impact on the business, which you

cannot shy away from. That is, as a development manager for a

technology team you can say that the product is perfect from a

technical point of view and it is not your problem that it has been

a failure in the market. Due to the broader scope of the role there

are also many more things that can go wrong and you will be

responsible for things outside your area of expertise.

Finally, as a manager your technical skills will erode faster than in

the other team structures. You will be responsible for multiple

technologies, such as backend, frontend, and data, and for

people management on top of that. The rapid pace of

technological progress only accelerates this; for example, you

were an expert in AngularJS and then they released Angular 2

and all your hard-earned skills became obsolete and you have no

time to learn the new version. And this is not only happening in

one layer of your tech stack, but in all layers, so keeping up with

everything can become pretty tough.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

17

In an attempt to keep the customer focus, but without losing their

technical edge, some companies have introduced matrix teams

that try to combine the best from both product and technology

teams.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

18

Team Structure 3: Matrix Team

A matrix team is a temporary product or project team that

consists of specialists from different functional areas, such as

product management, development, and testing. The idea behind

the cross-functional nature of the matrix team is to increase

collaboration between functions to make better products and

faster releases.

An old-school example of this team structure is Microsoft

Solutions Framework (MSF) which was popular back when

Microsoft dominated the software industry around the turn of the

millennium:

Group Program
Manager

Development
Manager

Test
Manager

Program Manager

Feature Team A

Program Manager Program Manager

Developer Developer Developer

Tester Tester Tester

Feature Team B Feature Team C

In MSF, a matrix team is called a feature team and focuses on a

product area, and it will last for the duration of a product release

or longer. For example, in Microsoft they had multiple feature

teams working on a new release of Microsoft Excel, and one of

those feature teams focused on Excel Macros.

A prototypical MSF feature team consists of one program

manager 9 , four developers, and two testers. The program

manager (who would probably be called a product owner today)

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

19

writes functional specifications, prioritizes features, and handles

coordination within the team.

But the program manager is not the developers’ line manager.

The developers report to a development manager who provides

guidelines on how they should do their job by defining the

development process, engineering practices, coding standards,

and so on. The development manager is also responsible for

people management, including hiring, promotions, training,

salary, team transfers, and so forth. The other roles have the same

structure: program managers report to a group program

manager, and testers report to a test manager.

The underlying idea is that matrix teams encourage cross-

functional collaboration because different specialists are working

together in the same team and they have a shared goal of

delivering a successful product. But at the same time the

specialists report to a functional manager who ensures excellence

within that area.

The matrix team structure is flexible and can be implemented in

many different ways. One of the most common parameters to

adjust is the power of the line manager versus the autonomy of

the matrix team. Not surprisingly, older companies tend to favor a

powerful line manager and younger companies tend to favor

team autonomy. Another parameter that is often adjusted is the

duration of the matrix team: is it a stable, permanent team, or a

dynamic, task-oriented team?

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

20

Yammer: Task-oriented matrix teams

Yammer, a social network for enterprises, uses a modern variation

of the matrix team pattern10. A key difference between Yammer

and Microsoft as companies is that Yammer continuously deploy

new features to production and do not have major product

releases like Microsoft have for their flagship products.

Yammer’s developers share the ownership of the entire codebase,

so there is no such thing as “my code” or “my module”. Each time

a task needs to be performed on the codebase, Yammer

establishes a temporary matrix team to perform this specific task.

When the task is complete the code is released to production and

the team is disbanded and developers are free again to join new

ad-hoc teams to address new tasks.

Their thinking is that this is highly agile, and people will not be

limited to work on a single product area but can quickly go

wherever they are most needed.

The development manager is responsible for developers within

his or her technical area, such as Ruby on Rails, Java, or React.

However, the development manager no longer defines guidelines

for how the developers should work, but instead acts as a coach

who is focused on growing his or her developers into top-notch

experts in their chosen technology.

Spotify: Product-oriented matrix teams

A different variation of the matrix team pattern is used at

Spotify11, an online music player, which prefers long-living, stable

matrix teams, which they call “squads”. Their reasoning is that it

takes a long time to master a product area, such as Spotify Radio,

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

21

and mastery is needed to build awesome products for their users.

On top of that, research shows that stable teams are more

productive, by up to 60%, than volatile teams12, because it takes

time for a team to gel.

Compared to more traditional matrix organizations, Spotify

empower their matrix teams and give them great autonomy, but

they still have line managers, which they call “chapter leads”, but

with the important twist that the line manager is also an active

member of a matrix team (for example, as a backend developer)

to make sure he or she stays in touch with reality.

Strengths

The primary strength of the matrix team compared to the

technology team is that it fosters much closer collaboration

across functional disciplines. Now the developers and testers are

part of the same team; The collaboration is further improved if

the product owner has an exciting vision for the product area that

unites the different functional disciplines. And similar to product

teams, the matrix team has a lower time to market for new

features than technology teams.

While the matrix team structure brings engineers closer to the

business and makes it easier to see how they contribute to the

success of the company, the engineers can still continue to seek

mastery within their chosen technology and continue to report to

a line manager who appreciates and understands their technical

work. The line manager also enforces alignment and quality

across teams, and the engineers will have a second opinion, and

supporter, which is helpful if they have a powerful and persuasive

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

22

product owner on the team or they feel uncomfortable with the

decisions taken within the team.

As with the product team structure, matrix teams also encourage

developers and testers to learn more about the business domain

that the matrix team is working in. This is really useful when it is a

highly complex business domain with many counter-intuitive

business rules. For simple domains, such as social networks or

blogging, it is less important.

The matrix structure also scales well and can be used for

delivering very large products. Microsoft released many of their

most successful products, such as Windows and Microsoft Office,

using this team structure. They were even able to compete with

young startups, such as Netscape, while using this model.

Obviously, Microsoft used some dirty business tricks to win the

browser war against Netscape, but they would have been unable

to compete with Netscape if they had failed to keep up with

Netscape’s development speed.

Weaknesses

A disadvantage of matrix teams, compared to product teams, is

that decision-making can involve many more stakeholders, such

as multiple line managers and product owners, which makes

decision-making more cumbersome and time-consuming.

In theory, a matrix team has a high degree of autonomy, but in

practice the line managers can enforce controls that limit the

team’s autonomy and the team will need to consult with the line

managers before trying anything too radical.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

23

There is also a risk that work processes inside the team will turn

into small waterfalls with extensive handovers between the

disciplines inside the team. This can happen when the line

manager is not actually part of the team but defines the process

that his or her people must follow within the team.

There is also a risk that the line managers may not see the big

picture and may start to sub optimize for their functional area. For

example, the test manager wants to introduce NASA-like quality

controls, while the customers are actually happy with the current

quality level and is much more interested in getting new features

quicker at the current quality level.

Many developers who have worked in a matrix team feel like they

have two managers, the development manager and the product

owner, and they often receive conflicting signals about what is

important. For example, the product owner says that the

developer can skip unit testing to meet the deadline, but the

development manager says that unit tests must be written for all

new code – and the developer is caught in the middle. Unclear or

overlapping responsibilities are a frequent source of conflict and

frustration in matrix organizations.

Decision making related to how the team works may even turn

into a lengthy process as multiple line managers may need to be

involved in a single decision. For example, the development

manager wants to introduce static code analysis and reduce the

technical debts it reveals, which should be a pure development

activity. However, the product owner feels that doing this initiative

will delay the development activities already on the team’s

product roadmap, so she wants to be involved in the decision.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

24

The test manager feels that it is an initiative related to quality, and

hence, he should have a say in it, and wants to incorporate it as

part of an overall test strategy.

As seen in the description of the three team structures, there isn’t

a single team structure that outperforms all the others in all

dimensions; each comes with its own strengths and weaknesses,

so which one should you choose?

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

25

Chapter 3

PICK THE RIGHT TEAM STRUCTURE

The right team structure for your software organization will

depend on what is important to your company and its customers.

In my experience there are roughly four dimensions, or key result

areas, that are important to software companies:

1. Product-market fit: The importance of delivering new

features that match perfectly what the customer needs.

2. Speed to market: The time it takes to deliver new features

and get them into the hands of end users.

3. Engineering excellence: The technical quality of the product,

such as efficient code, few defects, and so forth. Plus, the

need to introduce new technologies and to work with

cutting-edge technologies.

4. Cross-team collaboration: The importance of collaborating

across teams in the company. Are the teams independent or

do they need to work closely together?

The order of importance of these dimensions depends on your

company and its customers. For example, engineering excellence

is likely to be more important for mission-critical software than for

a startup still searching for product-market fit.

The different team structures will nudge you toward emphasizing

some of the dimensions more strongly than others. But you have

to be careful not to forget the remaining dimensions; that is, if

you excel in product-market fit and speed to market, but are

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

26

disastrous in engineering excellence, with many critical defects,

you are unlikely to be a success.

The arrows below are my subjective view of the strengths and

weaknesses of each team structure when all other things are

equal:

Technology

team

Product

team

Matrix

team

Product-market fit →  

Speed to market   

Engineering excellence   

Cross-team collaboration   

There are obviously many factors that can affect the dimensions;

for example, great technology teams in a great company may

have a faster speed to market than a so-so product team in a

mediocre company. And a technology team may perform worse

in the engineering excellence dimension if they have a legacy

codebase full of technical debts.

Finding the right structure for your software teams is more of an

art than a science, so the table above is not meant to represent a

formula that can be blindly applied, but is a reference to inform

your thinking. If speed to market is vital to your business, but

you’re using technology teams, maybe you should consider if

that’s still the right team structure for you. In addition, you may

want to mix and match some of the team structures, as we saw

Instagram did. For example, you might use product teams as your

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

27

default team structure, but use a technology team when you

need to introduce a new technology in your company.

My subjective observation is that engineering excellence is

becoming less important than it used to be; that is, it is still a

hygiene factor that can sink the company if you do not deliver on

it, but its relative importance, compared to the other dimensions,

is declining. For example, in most business, tuning the code so it

goes from good to great matters less than it used to, because of

cloud computing and other technical advances.

This is the reason why we see a trend toward product and matrix

teams on the technology versus product scale. Whether a

company chooses the product or matrix team pattern depends

on the company’s culture; for a competitive American company,

such as Amazon, the product team makes good sense; for a

collaborative Scandinavian company, such as Spotify, the matrix

team makes better sense, with a few essential adjustments.

Thank you for reading. I wish you the very best of luck with

designing the right engineering organization for your company.

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

28

REFERENCES

1 Collaborative Intelligence: Using Teams to Solve Hard Problems.

J. Richard Hackman. Retrieved February 15, 2020.

2 The Little Book on REST Services. Kenneth Lange. Retrieved

February 15, 2020.

3 How We Reorganized Instagram’s Engineering Team While

Quadrupling Its Size. James Everingham. Retrieved February 15,

2020.

4 If Your Boss Could Do Your Job, You’re More Likely to Be Happy

at Work. Benjamin Artz et al. Retrieved February 15, 2020.

5 Engineering Culture at Airbnb. Mike Curtis. Retrieved February

15, 2020.

6 Amazon’s “two-pizza teams”: The ultimate divisional

organization. Jason Crawford. Retrieved February 15, 2020.

7 The Scrum Guide. Retrieved February 15, 2020.

8 Clean Code: A Handbook of Agile Software Craftsmanship.

Robert C. Martin. Retrieved February 15, 2020.

9 How to be a program manager. Joel Spolsky. Retrieved February

15, 2020.

10 Why Yammer Believes the Traditional Engineering

Organizational Structure is Dead. First Round Review. Retrieved

February 15, 2020.

11 Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds.

Kniberg et al. Retrieved February 15, 2020.

https://scholar.harvard.edu/rhackman/publications/collaborative-intelligence-using-teams-solve-hard-problems
https://www.kennethlange.com/the-little-book-on-rest-services/
https://hbr.org/2017/11/how-we-reorganized-instagrams-engineering-team-while-quadrupling-its-size
https://hbr.org/2017/11/how-we-reorganized-instagrams-engineering-team-while-quadrupling-its-size
https://hbr.org/2016/12/if-your-boss-could-do-your-job-youre-more-likely-to-be-happy-at-work
https://hbr.org/2016/12/if-your-boss-could-do-your-job-youre-more-likely-to-be-happy-at-work
https://medium.com/airbnb-engineering/engineering-culture-at-airbnb-345797c17cbe
https://jasoncrawford.org/two-pizza-teams
https://jasoncrawford.org/two-pizza-teams
https://www.scrumguides.org/scrum-guide.html
https://www.goodreads.com/book/show/3735293-clean-code
https://www.joelonsoftware.com/2009/03/09/how-to-be-a-program-manager/
https://firstround.com/review/Why-Yammer-believes-the-traditional-engineering-organizational-structure-is-dead/
https://firstround.com/review/Why-Yammer-believes-the-traditional-engineering-organizational-structure-is-dead/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

29

12 Creating Great Teams: How Self-Selection Lets People Excel.

Sandy Mamoli and David Mole. Retrieved February 15, 2020.

https://pragprog.com/book/mmteams/creating-great-teams

HOW TO STRUCTURE YOUR ENGINEERING TEAMS

1

How to Structure Your Engineering Teams

The team structure you pick for your engineering organization

will have a massive impact on its effectiveness and productivity.

Research from Harvard University shows that team structure is the

single most important factor in determining team performance.

But how do you pick the right team structure for your

engineering organization? The short answer is that it depends on

what is important to your company: is it speed to market,

technical excellence, or something else?

This little book provides an overview of the most popular team

structures and shows their strengths and weaknesses using real-

world examples from Instagram, Airbnb, Yammer, Spotify, and

other well-known companies.

About the Author

Kenneth Lange is Chief Technology Officer at Tia Technology

where he leads the development of the most popular digital

insurance platform in Europe.

You can reach him on Twitter (@KennethLange) where he tweets

about technology leadership and related topics.

	INTRODUCTION
	TEAM STRUCTURES
	Team Structure 1: Technology Team
	Strengths
	Weaknesses

	Team Structure 2: Product Team
	Airbnb: Persona-based teams
	Amazon: Two-pizza teams and fitness functions
	Scrum and product teams
	Strengths
	Weaknesses

	Team Structure 3: Matrix Team
	Yammer: Task-oriented matrix teams
	Spotify: Product-oriented matrix teams
	Strengths
	Weaknesses

	PICK THE RIGHT TEAM STRUCTURE
	REFERENCES

